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Ocean spray and the thermodynamics of tropical cyclones
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Abstract. Serious gaps in knowledge about ocean spray at wind speeds over 40m/s remain difficult to fill by
observation or experiment; yet refined study of the thermodynamics of Tropical Cyclones (including typhoons and
hurricanes) requires assessment of the hypothesis that ’spray cooling’ at extreme wind speeds may act to reduce (i)
the initial temperature of saturated air rising in the eyewall and so also (ii) the input of mechanical energy into the
airflow as a whole. Such progressive reductions at higher speeds could, for example, make any possible influence
of future global warming on Tropical Cyclone intensification largely self-limiting. In order to help in extrapolation
of knowledge on ocean spray to extreme wind speeds, a probabilistic analysis is introduced which allows for the
effects of gusts, gravity and evaporation on droplet distributions, yet in other respects is as simple as possible.
Preliminary indications from this simplified analysis appear to confirm the potential importance of spray cooling.
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1. The need to fill gaps in knowledge about ocean spray at extreme wind speeds

Between ocean and atmosphere there exists at high wind speeds a thick layer of ‘a third fluid’:
ocean spray, consisting of a relatively tall cloud of droplets. Many of the smaller ones (with
radii not more than about 20µm) appear when air bubbles burst at the sea surface. A greater
mass of droplets, on the other hand, is formed [1] either as ‘splash’ torn from, or as ‘spume’
ejected from, whitecaps (in the form of droplets with radii ranging from about 20µm to much
larger values).

The international project HEXOS (Humidity Exchange Over the Sea) obtained extensive
data on spray over the North Sea at a ‘10m wind speed’ (that is, mean velocity measured at
height 10m above the sea surface) ranging from moderate values to not more than 18 m/s.
At such speeds, little effect of spray on rates of water vapour transfer to the atmosphere was
found [2].

On the other hand, the Russian research ship ‘Priliv’ in a 1988 Pacific cruise passed, suc-
cessively, near to two typhoons, ‘Tess’ (8830) and ‘Skip’ (8831), so that data were obtained
[3] at wind speeds up to 28 m/s. These were extremely careful observations, which agreed
completely with HEXOS results in finding negligible effect of spray below 18 m/s; yet, at
wind speeds between that value and 28 m/s, a massive increase in spray concentration was
recorded. It was accompanied by a closely parallel increase, from less than 1◦C to more than
5◦C, in 1T : the shortfall in air temperature below that of the sea surface. Indeed the data
suggest the presence at such higher wind speeds of a ‘spray cooling’ phenomenon, with so
much of the vapour transfer to surface winds coming from spray droplets that air heat loss to
supply the requisite latent heat cannot be compensated for in full by transfer of heat from the
ocean surface.
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12 James Lighthill

Fairall, Kepert and Holland [4], in a careful study of the ‘Priliv’ measurements, gave a the-
oretical analysis in support of such a ‘spray cooling’ interpretation. Moreover they extended
their analysis to a wind speed of 40 m/s, chosen as the speedU for which the widely used
formula

3·84× 10−6U3·41, (1)

for the fraction of sea surface [1] covered by whitecaps, reaches unity. At this speed, they
predicted that the mass density of spray should reach only 0·008 kgm−3 (less than 1% of air
density) and yet that vapour transfer from spray to air should exceed direct transfer from the
ocean surface by an order of magnitude.

Conclusions like theirs have great potential importance for the thermodynamics of Tropical
Cyclones (including both typhoons and hurricanes). A Tropical Cyclone (TC) is an intense
cyclone formed over a tropical ocean with maximum sustained winds around 50 m/s and with
diameter around 1000 km. It differs from other cyclones [5] in exhibiting the famous ‘eye of
the storm’: a central calm region – often, nearly free of clouds – surrounded by a circular
‘eye-wall’ consisting of exceptionally dense convective cloud.

The TC winds, that have followed long cyclonically spiralling paths over the ocean surface,
become practically saturated with water vapour at the eyewall, where they are lifted to great
heights by buoyancy forces (so that they never penetrate into the eye itself). This becomes
possible provided that the ambient ‘lapse rate’ (rate of decrease of atmospheric temperature
with height) is greater than the ‘moist-adiabatic’ lapse rate plotted in Figure 5 of [5] (this
rate is very roughly 5◦C per km, because the cooling of saturated air as it rises adiabatically
leads to condensation and release of latent heat, reducing such cooling from the unsaturated-
air rate of 10◦C per km to around half that value). Then saturated air as it rises is constantly
warmer than its surroundings and buoyancy can power its ascent all the way to the base of the
stratosphere.

A broad view of TC thermodynamics is provided by Emanuel’s heat-engine model [6], in
which the working fluid is a mix of dry air with water in one or more of its forms (vapour,
droplets and – at higher altitudes – ice crystals). The temperatureT1 at which the working fluid
initially takes in heat (mainly, in the form of latent heat of evaporation) is to a first approxima-
tion the sea surface temperature (but see below for attempts at a second approximation). Next,
an approximately adiabatic working phase (adiabatic, that is, for the moist-air working fluid)
takes place in the eyewall, while a heat-loss phase occurs at a temperatureT0 characteristic of
the base of the stratosphere.

Effectively, this description is that of a Carnot cycle operating between temperaturesT1

andT0 ; which, if both temperatures are expressed in kelvins, has thermal efficiency

T1− T0

T1
; (2)

quite a substantial fraction becauseT1 and T0 have values around 300K and 200K in the
tropics. The product of this efficiency (2) with heat intake per unit mass gives the input of
mechanical energy per unit mass of working fluid. Such input, occurring mainly in the eyewall,
must counteract that dissipation of mechanical energy per unit mass which takes place mainly
in the atmospheric boundary layer at the ocean surface.

Out of the three elements in this balance, only one depends sensitively on the heat-intake
temperatureT1. Turbulent dissipation per unit mass is effectively independent of temperature,
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Ocean spray and the thermodynamics of tropical cyclones13

Table 1. Values taken by 100qs (T1, p1) for p1 = 950mb (a typical TC
pressure).

T1 20◦C 22◦C 24◦C 26◦C 28◦C 30◦C 32◦C
100qs (T1, p1) 1·52 1·73 1·95 2·19 2·47 2·77 3·10

while the Carnot efficiency (2) depends only weakly on the value ofT1. By contrast, the
possible intake of latent heat per unit mass of air is proportional toqs(T1, p1), the saturated
vapour concentration by mass for air at temperatureT1 and pressurep1, and Table 1 shows
how steeplyqs(T1, p1) increases withT1, by a factor of 2 asT1 rises from 20◦C to 32◦C.
Such critical dependence onT1 for just this one factor in the fundamental TC energy balance
suggests both

(i) why TCs are tropical phenomena (they are observed to form only when sea surface
temperature is at least 26◦C; and also

(ii) why the effects of spray cooling (possibly increasing in extreme winds) might act to limit
TC intensities.

The latter suggestion could be particularly relevant to considerations of whether or not pro-
jected global warming is likely to enhance TC intensities – since such an enhancement, if it
increased spray cooling, might become largely self-limiting (see [7] and [8]).

This paper investigates possible effects of spray distribution onT1, defined as the average
temperature at which the working fluid reaches saturation (with its full latent-heat content
Lvqs(T1, p1) in terms of the latentLv of water vapour) so that it can begin its buoyancy-
powered rise in the eyewall. Although a first approximation toT1 is the sea-surface tem-
peratureTs, a thorough review of TC thermodynamics may require the use of a second
approximation

T1 = Ts −1T. (3)

On the other hand, it should not be assumed that the ‘Priliv’ measurements of sea-air temper-
ature difference1T can be used in Equation (3), since all were made at a substantial distance
from the eyewall of the typhoon under study. As the eyewall is approached,1T must be
altered by two opposing effects:

(a) because the relative humidityrH tends to 1, the cooling which a given mass of spray can
produce is steadily diminished; and yet

(b) because wind speeds rise to extreme values, there may be a large increase in the mass of
spray per unit horizontal area.

For applying Equation (3) to TC thermodynamics, there is a major need to fill gaps in knowl-
edge about ocean spray at extreme wind speeds so as to be able to estimate (see Section 8
below) whether or not effect (b) on1T can outweigh effect (a) as the eyewall is approached.

This need has just been explained from Emanuel’s heat-engine model, suggesting that the
full latent heatLvqs(T1, p1) which unit mass of air can acquire (withqs(T1, p1) given by
Table 1) determines, on multiplication by a thermal efficiency (2), the mechanical energy
input available for overcoming boundary-layer dissipation. Yet, even for those TC scientists
who view any heat-engine model just as an interesting analogy, the critical role ofT1 must
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14 James Lighthill

still be evident. For them the necessary mechanical workW , done by the buoyancy force
g(ρa − ρ)/ρ which lifts unit mass of air in the eyewall (with ambient density distributionρa)

and which acts through a distance dz = −dp/(ρag), might be written as an integral

W =
∫ p1

p0

(
1

ρ
− 1

ρa

)
dp (4)

along a moist-air adiabat, giving (from adiabatic relationships)

W =
∫ T1

T0

(
cp dT + Ldqs

)− ∫ p1

p0

dp

ρa
. (5)

Here, even though the latent heatL takes the valueLv (for condensation into liquid water)
only in the lower part of the troposphere (condensation being to ice crystals in the upper part),
the sensitivity toT1 is again evident through the presence of a termLvqs(T1, p1) in the first
integral. Therefore the potential influence of ocean spray on Equation (3) forT1 continues to
be important.

Unfortunately, however, there is a serious gap in knowledge about ocean spray at extreme
TC wind speeds. The ‘Priliv’ data extend only to 28 m/s, although a similar trend with wind
speed up to 40 m/s was found by Petrichenko and Pudov [9] on analysing pre-1988 records
made in the Pacific by 30 Russian research ships, and by Black, Pudov and Holland [10] on
analysing records from moored buoys operated in the Gulf of Mexico by the U.S. National
Data Buoy Center. Yet speeds of 50 to 60 m/s may be reached near a TC eyewall. It is this gap
which needs to be filled if questions about the balance between opposing effects (a) and (b) on
the value of1T are to be answered. On the other hand, formidable obstacles stand in the way
of any efforts to derive the necessary data by direct observation of spray distributions near a
TC eyewall. Accordingly, it remains hard to assess whether or not future global warming has
the potential to bring about a significant increase in TC intensities.

2. Modest steps towards an improved fluid-mechanical analysis of ocean-spray
distribution with height

Against the background of those serious difficulties which may oppose (see Section 1) an
attempt to study ocean-spray distributions at extreme wind speeds by observation or experi-
ment, the alternative possibility of investigation by fluid-mechanical analysis is considered in
this section. Necessarily, such an essentially theoretical approach will at the best be just tenta-
tive. Indeed, all that can reasonably be attempted is to introduce some sort of supplementary
analytical approach which, when used alongside approaches already available in the literature,
may lead to results in which a modestly increased level of trust can be placed.

Previously existing methods range from those based [11] on the statistical theory of turbu-
lence in the atmospheric boundary layer (HEXOS data have been fruitfully analysed by such
methods) to so-called Monte Carlo simulations of droplet trajectories [12]. Here, an attempt is
made to add another approach (somewhat intermediate between the two), aimed at estimating
the probability distribution for the height of a particular spray droplet at various values of the
time t after it first leaves the surface. This approach, designed of course for use at wind speeds
far greater than those appearing in HEXOS observations, is aimed moreover at augmenting
confidence, so that it may tentatively be applied, even under conditions where no comparison
with observation is available.
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Ocean spray and the thermodynamics of tropical cyclones15

Indeed, where models have been (very successfully) tailored towards fitting HEXOS data
at North Sea wind speeds, it remains uncertain whether they are well adapted towards use at
any extreme speed. For example they envisage the height of the droplet evaporation zone being
closely related to significant wave height [1], which certainly leads to satisfactory agreement
with HEXOS heat and vapour data – even though HEXOS measurements of actual droplet
distributions [13] extended higher than the models allow for.

One objective of the present analysis is to study whether the heights of spray clouds may
become much greater than has hitherto been suspected at TC wind speeds. Yet, just because of
this objective (and of the need to make conclusions credible), all of those many simplifications
which a practicable analysis needs to incorporate have been selected ‘cautiously’, in the sense
that they are simplifications tending, if anything, to underestimate the heights to which spray
clouds may extend.

It is especially the vertical component,w, of air velocity whose statistical properties in-
fluence (along with the effects of gravity) how droplets are vertically distributed. To a crude
approximation, we may think of a parcel of air being subjected to a random succession of
gusts creating different vertical movements (up or down), while a droplet within the parcel
falls relatively to it under the influence of gravity at roughly its terminal velocity. This crude
picture underlies the supplementary analytical approach that is introduced below.

Of course G. I. Taylor’s celebrated 1921 paper ‘Diffusion by continuous movements’
rightly emphasized [14] how diffusion in a continuous, albeit turbulent, fluid flow differs es-
sentially from diffusion associated with those random movements of molecules which undergo
discontinuities whenever two molecules collide. For mathematically describing the effects of
continuously varying random movements of a fluid particle, Taylor introduced correlation
functions of the type which nowadays are generally called ‘Lagrangian’ (to distinguish them
from the Eulerian correlation functions which later came to be used still more widely); more
recently, attention was drawn by Hunt [15], as well as by subsequent authors, to the persistent
value of using such functions in diffusion studies.

In an atmospheric boundary layer with statistical properties which are horizontally ho-
mogenous, the appropriate Lagrangian correlation function for characterizing random vertical
displacements of a particle (small parcel) of air may be written

C(z, τ) = 〈w(t)w(t + τ)〉〈[w(t)]2〉 . (6)

Here,w(t) represents the particle’s vertical component of velocity at a certain timet when
it is at heightz, whilew(t + τ) represents for anyτ > 0 the vertical component of velocity
for the same particle at a later timet + τ (when in general it is at a different height); angle
brackets signify an average over all such particles.

The definition (6) makesC → 1 asτ → 0, while the random nature of turbulence ensures
thatC is effectively zero wheneverτ is large. Furthermore, the integral

T (z) =
∫ ∞

0
C(z, τ)dτ, (7)

which has the dimensions of time, is often called the Lagrangian correlation time. Essentially
(see Figure 1), it is a measure of that time-difference within which values ofC remain sig-
nificant; to a crude approximation, the correlationC(z, τ) is substantial whenτ < T and
yet relatively insignificant whenτ > T . ThusT is a sort of ‘time of flight’ for the coherent
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Figure 1. Solid line: typical variation ofC(z, τ) with τ . Broken line: simplifying approximation.

vertical displacement of a small parcel of air, after which the immediately succeeding vertical
displacement can almost be considered as if it were statistically independent. Such a view
of the Lagrangian correlation timeT (z) may at least be more valuable than were similar
views (once fashionable) about ‘mixing lengths’ – above all, because time is one-dimensional;
whereas the three-dimensional character of space, and moreover the constraints on velocity
fields provided by the equation of continuity, place obstacles in the way of any spatial analogue
to the simplifying interpretation figure given in Figure 1.

The present model not only adopts this crude simplification (assuming statistically inde-
pendent vertical displacements of a parcel of air in successive times of flight) but also – with
the principal object of maximum simplicity – uses for the time of flight a single uniform value
T independent ofz. That additional simplification is made even though, in established descrip-
tions of turbulent boundary layers over rough solid surfaces, the Lagrangian correlation time
T increases with heightz. Admittedly, the atmospheric boundary layer over a deeply heaving
ocean surface might for small heightsz above mean sea level involve increased coherence
of vertical motion, which would tend to smooth out the variation ofT with z; even so, the
primary purpose of assuming a uniform time of flightT is to obtain a spray model simple
enough to facilitate extrapolation to greatly increased wind speeds. The assumption may be
‘cautious’ (in the sense suggested at the beginning of Section 2) because it neglects enhanced
vertical displacements experienced by droplets that have reached high levels.

Once the time of flightT has been taken independent ofz, it is logical to postulate the
same height-independence for a key probability distributiong(ζ ) which will be called ‘the
gust function’. Hereg(ζ ) is the probability distribution forζ, the vertical displacement of a
parcel of air in the fixed timeT . (Its height independence can reasonably be assumed from
the fact that measured root-mean-square values for the vertical component of velocity are
practically uniform across a turbulent boundary layer.) IfR is the range of possible values of
ζ, then the gust functiong(ζ ) satisfies the equations

∫
R

g(ζ )dζ = 1,
∫
R

ζg(ζ )dζ = 0,
∫
R

ζ 2g(ζ )dζ = G, (8)

for a probability distribution with zero mean and with varianceG. In what follows,g(ζ ) will
normally be taken as an even function with range|ζ | < Z.

This paper’s primary concern is to estimatef (z, t), the probability distribution for the
heightz of a spray droplet at timet after leaving the levelz = 0. During the time of flightT
a droplet within a parcel of air descends relatively to it by a distance close toV T , whereV is
its terminal velocity (at least, on a ‘cautious’ assumption that ignores any possible levitating
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influence of such coherent eddy motions as may help to keep droplets aloft in rainclouds).
This implies thatf (z, t) satisfies the integro-difference equation

f (z− V T, t + T ) =
∫
R

f (z− ζ, t)g(ζ )dζ, (9)

where the right-hand convolution of the probability distribution for the droplet being at height
z − ζ at time t with the probability of the parcel of air being displaced byζ during the
time of flight T gives the probability distribution for the parcel being at heightz, and so also
for the droplet being at heightz − V T , at time t + T . (Here, with expected mass densities
for droplets [4] of order 10−2 corresponding to volume densities of order 10−5, interaction
between droplets may reasonably be neglected.)

Evidently, the initial condition appropriate to solutions of this integro-difference equation
is

f (z,0) = δ(z) (10)

because the probability distributionf (z, t) by its definition is concentrated at just one value
z = 0 at time t = 0. The boundary condition, on the other hand, needs more careful
consideration.

Essentially, this boundary condition must take into account the fact that the life of a
spray droplet cannot continue after it has once returned to the ocean surface. Admittedly, that
surface’s height changes continually; here, however, the cautious assumption is made that a
droplet disappears as soon as it has regained its initial height; in other words, whenz becomes
zero. This assumption may be described as cautious (erring on the side of over-predicting
the reabsorption of spray droplets) simply because the majority of droplets are believed to
be generated at levels higher than mean ocean-surface levels. For applying such a boundary
condition to the integro-difference equation (9), it is sufficient to specify (as an overriding
requirement) that

f (z, t) = 0 for allz < 0. (11)

This excludes from the range of integrationR all values ofζ greater thanz; while, still more
simply, it requires Equation (9) to be ignored wheneverz < V T .

In the next two sections, exact solutions of Equation (9) under conditions (10) and (11) are
compared with exact solutions of a partial differential derived from it by an approximation
scheme of Fokker–Planck type. In this scheme, the expressionf (z− ζ, t) is approximated as
just the first three terms of its Taylor series, to make the right-hand side∫

R

[
f (z, t)− ζ ∂f

∂z
+ 1

2
ζ 2∂

2f

∂z2

]
g(ζ )dζ, (12)

which by Equation (8) is

f (z, t)+ 1

2
G
∂2f

∂z2
. (13)

The left-hand side is then approximated as

f (z, t)+ T
(
∂f

∂t
− V ∂f

∂z

)
(14)
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to yield a partial differential equation of convection-diffusion type,

∂f

∂t
− V ∂f

∂z
= D∂

2f

∂z2
, whereD = G

2T
(15)

is the diffusivity. In the ‘comparison’ Section 4, appropriate solutions of Equation (15) are
found to represent solutions of (9) in an asymptotic sense, with quite reasonable accuracy
achieved already for surprisingly modest values oft/T .

3. Solutions of the integro-difference equation for a particular case

In a first attempt to make such a comparison, the particular form chosen for the functiong(ζ )

was the simple piecewise-constant form

g(ζ ) = 1
2Z
−1 for − Z < ζ < Z and = 0 for |ζ | > Z, (16)

which satisfies Equations (8) withG taking the uniform value

G = 1
3Z

2. (17)

Evidently, just because the discontinuous form ofg leads to solutions forf with discontinu-
ities in its gradient∂f/∂z, the test of whether such solutions asymptotically resemble those of
the partial differential equation (15) becomes quite an exacting one.

The physical problem described by the above choice is something of a classical ‘random
walk’. During each time intervalT a small parcel of air is subjected to a random gust which
gives it a vertical displacement taking any value from−Z to+Z with equal probability, while
a droplet within that parcel of air descends by a distanceV T relative to it. Clearly, the nature
of solutions must depend critically on the ratio ofV T toZ. This may be designated as

V T

Z
= ε, (18)

where the letterε is used because the most interesting distributions of ocean spray, appropriate
to extreme-wind conditions, are expected to be those where the rangeZ of vertical displace-
ments by gusts is much bigger than a simultaneous downward displacementV T of a droplet
by gravity. Nonetheless it must be stressed that the problem defined above is solved here for
arbitrary values ofε – without any approximation for smallε being required.

The integro-difference equation (9), subject to the boundary condition (11), which excludes
from the range of integrationR all values ofζ greater thanz, can be regarded as a recurrence
formula determining functionsfn(x) defined as

fn(x) = Zf (Zx, nT )wherex > 0 (19)

for successive positive integersn. After a further substitutionζ = Zξ in the integral, Equation
(9) becomes

fn+1(x − ε) = 1
2

∫
fn(x − ξ)dξ, (20)
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Ocean spray and the thermodynamics of tropical cyclones19

taken over the range of integration|ξ | < 1, x − ξ > 0. Finally, with y replacingx + ε − ξ,
we obtain

fn+1(x) = 1
2

∫
N

fn(y)dy, (21)

where the new rangeN is defined by the inequalities

y > 0, −1< y − x − ε < 1. (22)

The recurrence formula (21) defines uniquely all the distributionsfn(x) for n > 0 given
the initial condition

f0(x) = Zf (Zx,0) = Zδ(Zx) = δ(x) (23)

specified by Equation (10). In particular,f1(x) is the step function

f1(x) = 1
2 (0< x < 1− ε), 0 (1− ε < x), (24)

after which classical integral calculus allows every subsequentfn(x) to be determined. For
example, 4f2(x) takes the values

1− ε, 2− 2ε − x and 0 (25)

in the intervals 0< x < 1− ε, 1− ε < x < 2− 2ε and 2− 2ε < x, respectively. Similarly,
8f3(x) for x > 0 takes the values

1− 3ε2+ (1− 3ε)x − 1
2x

2, 3
2(1− ε)2,

5
2(1− ε)2− (1− ε)x, 1

2(3− 3ε − x)2 and 0 (26)

in intervals separated by the pointsx = 1− 3ε, 1− ε, 2− 2ε and 3− 3ε.
The distributionsf4(x) andf5(x) are somewhat more complicated. Thus, 16f4(x) takes

values forx > 0 given by quite different algebraic expressions in intervals separated by the
pointsx = 1− 3ε, 1− ε, 2− 4ε, 2− 2ε and 3− 5ε; out of which, in order to save space,
while still allowing verification by the reader, only the first and last are quoted here:

4
3 − 8ε2+ 8ε3+ (3

2 − 5ε + 7
2ε

2
)
x − 1

2(1− ε)x2 (27)

and

1
6(4− 4ε − x)3H(4− 4ε − x)− 1

6(3− 3ε − x)3H(3− 3ε − x), (28)

whereH is the Heaviside function (1 for positive, and 0 for negative, values of its argument).
Furthermore, 32f5(x) takes values forx > 0 given by different expressions in intervals
separated by the pointsx = 1 − 5ε, 1 − 3ε, 1 − ε, 2 − 4ε, 2 − 2ε and 3− 5ε; the
first and last now being

23
12 − 25

2 ε
2+ 125

4 ε
4+ (7

3 − 6ε − 11ε2+ 36ε3
)
x
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Figure 2. The functionsfn(x) plotted againstx for n = 1 to 5 in the caseε = 0.

+ (−1
4 − 7

2ε + 47
4 ε

2
)
x2 + (−1

3 + 5
3ε
)
x3+ 1

12x
4 (29)

and

1
24 (5− 5ε − x)4H (5− 5ε − x) − 1

24 (4− 4ε − x)4H(4− 4ε − x)
−1

6(1− ε)(3− 3ε − x)3H(3− 3ε − x), (30)

respectively. Needless to say, the most comprehensive checks on the correctness of all the
algebraic expressions calculated forfn(x) with n = 1 to 5 have been made.

Far more important, however, than these algebraic expressions are the actual values of the
functionsfn(x), as plotted in Figures 2 to 6. Here, Figure 2 for the special caseε = 0 shows
all five functions plotted to the same scale to give a clear view of their relative magnitudes;
while, on the other hand, eachfn(x) for 26 n 6 5 is plotted in Figures 3 to 6 for five different
values(0,0·05,0·1,0·15 and 0·2) of ε, with different scales used in each figure so as to offer
for eachn as much detailed information as possible.

4. Comparisons with relevant solutions of the partial differential equation

In Section 3 exact solutions of the integro-difference Equation (9) were derived, and plotted
in Figures 2 to 6, for the particular case specified at the beginning of that section. Now those
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Figure 3. Plots off2(x) for five values ofε (namely, 0, 0·05,0·1,0·15 and 0·2, reading from top to bottom).

solutions are given asymptotic interpretations for relatively large values oft in terms of ele-
mentary solutions of the partial differential equation (15). Such interpretations are presented
first for the curves of Figure 2, representing the limiting caseε = 0− an important limit
because, in extreme winds, values ofε are expected to be small for most droplets.

The recurrence formula (21) might be thought to suggest a halving of magnitude of each
fn+1(x)with respect tofn(x); yet Figure 2 shows that, except in the casen = 1, the magnitude
as measured by both boundary and maximum values,

bn = fn(0)andmn = max
x>0

fn(x), (31)

falls a lot more slowly withn. Also, reduced magnitude is accompanied by increased range,
so that the integral

In =
∫ ∞

0
fn(x)dx, (32)

representing the overall probability that a droplet remains unabsorbed, falls more slowly still.
Moreover, the moment

Mn =
∫ ∞

0
xfn(x)dx = XnIn (33)

of the probability distributions does not fall at all, while the ratioXn = Mn/In, giving the
mean height of unabsorbed droplets, steadily increases.

Log-log plots of all the above quantities againstn, shown in Figure 7, are consistent in
each case with an asymptotic power-law behaviour given by one of the straight lines. These
represent (i) limiting forms

bn ∼ 0·68n−3/2, mn ∼ 0·59n−1 and In ∼ 0·56n−1/2, (34)
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towards which the exactly determined points plotted forn = 2,3,4 and 5 appear to converge
rapidly, and (ii) asymptotes (identifiable to just one significant figure)

2Mn→ 0·8 and Xn ∼ 0·7n1/2, (35)

towards which the exact points seem to be tending asn increases – although each of the five
quantitiesbn, mn, In,2Mn andXn plotted in Figure 7 starts out forn = 1 from the same value
0·5 shown there as a ringed point.

Actually, the third coefficient 0·56 in the asymptotic expressions (34) is written from now
on asπ−1/2 to which it is extremely close; indeed, for 16 n 6 5, and despite the complexity
of expressions forfn(x) in different intervals ofx, the integral (32) simplifies to

In = 1.3.5 ... (2n− 1)

2.4.6 ... (2n)
, (36)

which is asymptotically (πn)−1/2 for largen. Then Equation (19) gives∫ ∞
0
f (z, t)dz ∼

(
T

πt

)1/2

(37)

for larget .
Such asymptotic tendencies may now be related to solutions of the partial differential

equation (15) which, in the simple case whenG takes the value (17) and whenε = 0 (so
that Equation (18) givesV = 0), becomes the classical diffusion equation

∂f

∂t
= D∂

2f

∂z2
with diffusivity D = Z2

6T
. (38)

A standard solution which satisfies the initial condition (10), although it has zero diffusive
transportD∂f/∂z acrossz = 0, is the Gaussian probability distribution

fG(z, t) = 1

2(πDt)1/2
e−

z2
4Dt , (39)

with the expected increase in range like(Dt)1/2. Yet, fG has a constant integral rather than
one showing the asymptotic decrease (37). On the other hand, itsz-derivative has an integral
from 0 to∞ equal to−fG(0, t), so that condition (37) is satisfied by∂fG/∂z if multiplied by
a suitable constant to yield

f (z, t) = −2(DT )1/2
∂fG

∂z
=
(
T

πt

)1/2
z

2Dt
e−

z2
4Dt . (40)

Then Equation (19), with the value (38) forD, gives

fn(x) =
(

1

πn

)1/2 3x

n
e−

3x2
2n ; (41)

which agrees with two of the limiting forms (34) since, besides havingIn = 0·56n−1/2, it has
maximum value

mn =
(

3

πe

)1/2

n−1 = 0·59n−1, (42)
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attained forx = (n/3)1/2. Also, it is consistent with the asymptotes (29), since it gives

Mn =
∫ ∞

0
xfn(x)dx = 6−1/2 = 0·408 (43)

andXn = Mn/In = 0·724n1/2.
Thus, Equation (37) may in a crude sense represent an ultimate asymptotic form forfn(x);

nevertheless, it suffers from at least three unsatisfactory features:

(a) it has zero boundary valuebn = fn(0), unlike the true solutions of the integro-difference
equation (21) as plotted in Figure 2;

(b) its maximum (42) is reached wherex has the unrealistically high value(n/3)1/2; and
(c) the momentMn remains fixed at its asymptotically constant value (43) instead of rising

towards it gradually asn increases.

Every one of these disadvantages may be overcome by a quite small shift in the origin of
x; say, tox = −a (this implies a change in the origin ofz to z = −aZ, permissible since
f (z+ aZ, t) is a solution of Equation (38) wheneverf (z, t) is).

After such a revision of expression (41) to

fn(x) =
(

1

πn

)1/2 3(x + a)
n

e−
3(x+a)2

2n , (44)

the above unsatisfactory features are seen to disappear. Thus,fn(x) takes a value

bn =
(

1

πn

)1/2 3a

n
(45)

atx = 0, while its peak value (42) is unchanged but is attained for

x =
(n

3

)1/2− a. (46)

Moreover, the integralIn undergoes only a minor change to(
1

πn

)1/2

e−
3a2
2n (47)

which remains very close to (πn)−1/2 for smalla, when, however,Mn receives a more sub-
stantial change to

6−1/2− a(πn)−1/2. (48)

Expression (48) forMn strongly suggests the choicea = 0·30, since exactly calculated
values for (6−1/2 − Mn)(πn)

1/2 are 0·280,0·292,0·294,0·295 and 0·296 for n = 1,2,3,4
and 5. This choice 0·30 for a is indeed small enough for the exponential in (47) to be very
near 1 for the larger values ofn.

A slightly higher estimate fora is indicated by Equation (45) which, while agreeing with
results obtained earlier in makingbn proportional ton−3/2, allows the coefficients in (45) and
(34) to coincide only ifa = 0·40.There are, however, good reasons for giving more weight to
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the choicea = 0·30, derived from an integral property (33) of the distribution (its moment),
than to the choicea = 0·40 inferred from a single valuebn = fn(0). First of all,Mn is
preferentially affected by values offn(x) for largerx (representing the distribution of spray
away from the surface) which are the values of primary interest. Furthermore, a distribution
(44) with continuous slope must mainly be considered appropriate for approximating that part
of the curve offn(x) which has continuous slope; namely, the part withx > 1. If so, then
expression (46) needs to be interpreted as that value ofx for which the curve representing
fn(x) for x > 1 would reach its maximum if extrapolated back tox < 1. For the exactf4 and
f5 curves shown in Figure 2 this happens forx = 0·775 andx = 0·945 respectively− while
Equation (46) after the choicea = 1

3 (which attaches twice as much weight to 0·30 as to 0·40)
would give the reasonably close valuesx = 0·822 andx = 0·958.

The above considerations, all taken together, suggest that a good asymptotic approximation
to fn(x) may be given by Equation (44) with

a = 1
3. (49)

This suggestion is also supported by Figure 8, where the exactf4 andf5 curves, despite their
discontinuities of slope atx = 1, are shown to be numerically close to their smoothed approx-
imations (44). (Here, the functions plotted aref4(x) and 2f5(x) in order that one diagram can,
with no confusing overlap, show both curves – which, furthermore, have heights as in Figures
5 and 6, respectively.)

A solution of the diffusion equation (38) that asymptotically represents solutions of the
integro-difference equation is given then, from Equations (19) and (44), as

f (z, t) =
(
T

πt

)1/2
z+ aZ

2Dt
e−

(z+aZ)2
4Dt . (50)

This asymptotic solution satisfies a more complicated boundary condition than the simple so-
lutions (40) and (39); for which, respectively,f = 0 and∂f/∂z = 0 onz = 0. Asymptotically,
the solution (50) satisfies

f = aZ∂f
∂z

on z = 0, (51)

and it is worth considering how this boundary condition, with the value (49) fora, should be
interpreted.

The true boundary condition, stating (Section 3) that ‘a droplet disappears as soon as it has
regained its initial height’ (that is,z = 0), may on the basis of the diffusion equation (38) be
viewed as a statement about the rateD∂f/∂z of diffusive transport into the surface atz = 0.
During a single time of flightT , Equation (16) allows the vertical displacement of a droplet
to take all values between−Z andZ with equal probability, and so the chance of a droplet
initially at heightz < Z reachingz = 0 is (Z − z)/2Z. Therefore

TD

(
∂f

∂z

)
z=0

= 1

2Z

∫ Z

0
(Z − z)f (z, t)dz, (52)

a boundary condition relating total diffusive transport during timeT to the distributionf (z, t)
of droplets at heightsz < Z. Now, if we approximate, the right-hand side, using just two
terms of a Taylor series as

1

2Z

∫ Z

0
(Z − z)

[
f (0, t) + z

(
∂f

∂z

)
z=0

]
dz, (53)
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then Equation (52) with expression (38) forD gives

1
6Z

2

(
∂f

∂z

)
z=0

= 1
4Zf (0, t)+ 1

12Z
2

(
∂f

∂z

)
z=0

, (54)

which indeed yields the simple boundary condition (51) witha = 1
3, as satisfied by the

asymptotic representation (50) of exact solutions of the integro-difference equation.
It must, of course, be emphasized that the amplitude of any such form (50) for relatively

large t cannot be deductively related to initial conditions att = 0. Nonetheless, after the
asymptotic boundary condition (51) has come into force, any solution of the diffusion equation
(38) can easily be proved to maintain constant values of the integral∫ ∞

0
(z+ aZ)f (z)dz, (55)

which, moreover, takes for the representation (50) the asymptotically constant value

6−1/2Z = 0·408Z (56)

(corresponding to the value 6−1/2 given by Equation (48) forMn +aIn). At least expression
(56) is of broadly similar magnitude to the value of the integral (55) fort = 0, given by
Equation (10) as

aZ = 0·333Z, (57)

and this may add just a little to existing confidence in the asymptotic representation (50) –
even though no means is available for predicting the exact amplitude of such an asymptotic
form.

The above extended discussion of the limiting caseε = 0 provides solid foundations for
a far briefer account of cases withε > 0. Then the partial differential equation (15) is the
convection-diffusion equation, of which an exact solution closely analogous to (50) may be
written

f (z, t) = B(ε)
(
T

πt

)1/2
z+ aZ

2Dt
e−

(z+V t+aZ)2
4Dt . (58)

Here a multiplying factorB(ε), for whichB(0) = 1, has been included to allow for the above-
noted uncertainties regarding amplitudes of asymptotic forms. The corresponding revision to
Equation (44) forfn(x) is

fn(x) = B(ε)
(

1

πn

)1/2 3(x + a)
n

e−
3(x+εn+a)2

2n . (59)

The main motivation for seeking a solution (58) of Equation (15) which, in comparison with
its form (50) forε = 0, involves a simple shift (fromz to z+ V t) within the exponent, arises
from the study of Figures 4, 5 and 6 forf3(x), f4(x) andf5(x). In the far right-hand parts
of these figures, every curve forε > 0 appears to be shifted to the left by approximately a
distanceεn from the curve forε = 0, and expression (59) has just this property because it is
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Figure 4. Similar plots off3(x).

Figure 5. Similar plots off4(x).

for the larger values ofx that changes in the exponential dominate over changes in the factor
outside it.

Figure 9 shows moreover that the asymptotic form (59), with

B(ε) = 1+ 1·6ε, a = 1
3, (60)

gives just as close a representation of thef4 andf5 curves forε > 0 as was found in Figure
8 for ε = 0. Here it is interesting to note that such closeness of representation makes no
requirement ona to vary withε, even though the amplitude factor needs to be allowed a mod-
est variation (from 1·00 to 1·32 asε increases from 0 to 0·20). Once again, overlap between
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Figure 6. Similar plots off5(x).

curves in Figure 9 is avoided by plottingf4(x) and 2f5(x); while, for further avoidance of
overlap, the curves forε = 0·05 andε = 0·15 are omitted in the former case, and those for
ε = 0·10 andε = 0·20 in the latter, even though agreement with the asymptotic form (59) is
equally good for those curves which have been omitted.

Under conditions (60), then, the solution (58) of the partial differential equation (15) gives
an asymptotic representation of solutions of the integro-difference equation (9) which offers
reasonable accuracy after just 4 or 5 times of flight. This conclusion for a case when the
gust functiong takes the discontinuous form (16) is particularly encouraging because, despite
consequent discontinuities in slope in solutions of the integro-difference equation, these are
quite well represented by the asymptotic form (58) with continuous slope. Similar agreement
is evidently still likelier wheng has a smooth form; and, as a first step, Section 5 offers an
extension to cases wheng(ζ ) takes a rather general continuous form as function ofζ .

5. Some initial steps towards generalisation

Before attempting such a natural generalisation, however, it may be worth pausing to consider,
in the very simple case (16), what implications the conclusions of Section 4 would have for
the spatial distribution of spray droplets. It is indeed the somewhat dramatic nature of those
implications which acts as a spur to seeking out more general conclusions.
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Figure 7. Log-log plots ofbn,mn, In, 2Mn andXn againstn for n = 1 to 5 (all take the ringed value 0·5 for
n = 1, while the square marks a common valueb2 = m2 = 0·25), shown alongside the asymptotes (34) and (35).

The definition off (z, t) – as a probability distribution for the heightz of a spray droplet
at timet after it first appears atz = 0 – implies a rather special meaning for the integral

F(z) =
∫ ∞

0
f (z, t)dt. (61)

Very briefly, if at all times the surfacez = 0 behaved as a source generating droplets at an
average rateS per unit area per unit time, thenSf (z, t)dt would at any instant be the volume
distribution at heightz of droplets which had been generated at times betweent and t + dt
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Figure 8. Comparisons, whenε = 0, of exact (kinked) curves forf4(x) and 2f5(x)with their (smooth) asymptotic
forms (44).

Figure 9. Comparisons of exact (kinked) curves forf4(x)with ε = 0·1 andε = 0·2, and for 2f5(x)with ε = 0·05
andε = 0·15, with their (smooth) asymptotic forms (59).
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earlier on; therefore, the volume distribution of all the droplets generated at previous times
would beSF(z). The true situation, however, is a little more complicated because the form of
f (z, t) depends on the terminal velocityV . Thus, it is necessary to define a source function
S(V )dV as the rate of production per unit area per unit time of droplets having terminal
velocities betweenV andV +dV (see [1] for a compendium of existing knowledge on source
functions) in order that

[S(V )dV ]F(z) (62)

may represent the volume distribution of such droplets at heightz.
The most dramatic deduction from Section 4 is the form ofF(z) for V = 0 at relatively

large heights; say, forz > 3Z (or x > 3). Thenf1, f2 andf3 vanish (Figure 2) so that all
contributions to the integral (61) are fromn > 4; that is, from timest > 4T for which the
asymptotic representation (50) may be used in the integral. Then, after the substitutions

τ = (z+ aZ)2
4Dt

, dτ = −(z+ aZ)
2

4Dt2
dt, (63)

the integral (61) becomes

F(z) =
(
T

πD

)1/2 ∫ ∞
0
τ−1/2 e−τ dτ =

(
T

D

)1/2

= T

Z
61/2, (64)

a value independent ofz. In brief summary, diffusion by random gusts can, given time, raise
weightless droplets to arbitrary heights− notwithstanding the fact that any which return to
the surface are reabsorbed. (Note: swifts are commonly observed in strong winds feeding
at heights exceeding 1 km on the aeroplankton of insects which remains abundant at such
heights.)

It could be argued, of course, that, whenever the infinite integral (61) converges (as it
does whenf takes the form (50), even though for (39) it diverges), thenF(z) must be a
time-independent solution of Equation (38); that is, either a linear function ofz or else a still
simpler constant function such as has been found. No argument along these lines, however,
could predict the value (64) of that constant – which usefully equates the volume distribution
of weightless droplets to their production per unit area in a single time of flightT , multiplied
by 61/2Z−1. (As before, there exists no easy route to inferring amplitude.)

Yet prime interest is attached, not to weightless droplets, but to those with a positive –
albeit small – terminal velocityV . Then Equations (24), (25) and (26) confirm that (once
again)f1, f2 andf3 vanish forz > 3Z; where, therefore,f (z, t) can be represented by its
asymptotic form (58). Here the exponential factor may, after the substitution (63), be written

e
−
(
τ+η+ η2

4τ

)
with η = V (z+ aZ)

2D
, (65)

so that the integral (61) becomes

F(z) = B(ε)
(
T

πD

)1/2

e−η
[∫ ∞

0
τ−1/2 e

−
(
τ+ η2

4τ

)
dτ

]
. (66)
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The square brackets in (66) enclose a standard integral from Bessel-function theory, equal to
π1/2 e−η; which, with the definition (65) ofη, yields

F(z) = B(ε)
(
T

D

)1/2

e−
V (z+aZ)

D . (67)

As before, it might have been expected thatF(z) would be one of the time-independent so-
lutions of Equation (15); namely, either a multiple of e−V z/D (as has just been found) or such
a multiple plus a simple constant, but similar arguments by themselves could never deduce
what multiple might arise. With the values (60) forB(ε) anda, and the value (38) forD, the
multiple turns out to be as follows:

F(z) = C(ε)
(
T

D

)1/2

e−V z/D = C(ε)T
Z

61/2 e−6εx, (68)

where the factor

C(ε) = (1+ 1·6ε)e−2ε (69)

varies rather little from 1 for small values ofε. Equation (68) shows indeed that it is droplets
with extremely small values ofε = V T/Z which can abound at relatively large nondimen-
sional heightsx = z/Z.

In terms ofS(V ), the distribution of droplet production rate with respect to droplet terminal
velocity, Equations (62) and (68) imply that the volume distribution of droplets at heightz is
close to(

T

D

)1/2 ∫ ∞
0
S(V )e−V z/D dV. (70)

Thus, it is a simple multiple of the Laplace transform ofS(V ).
This section is now concluded with an initial attempt to look beyond that special case (16)

which has been treated at such length. A simple step towards generalisation, might permitg to
be a smooth, but otherwise rather general, even function ofζ with varianceG . Thenf (z, t)
would be a smooth function ofz, still more likely to be well represented asymptotically by a
solution of the partial differential equation (15). Also, that equation, in the caseV = 0, would
possess appropriate simple solutions of the general form (50).

WhenT remains unchanged, but parameters (such asZ) used to define the gust function
are generalised, it may forV = 0 seem natural to use Equation (50) with a new shift of origin
A replacing the existing shiftaZ. Here,A should be determined from a revised boundary
condition

f = A∂f
∂z

on z = 0, (71)

inferred from the true boundary condition by a generalisation of the argument in Equations
(51) to (54).

If g(ζ ) differs from zero only in the interval−Z < ζ < Z, then Equation (52) needs
replacement by an equation

TD

(
∂f

∂z

)
z=0

=
∫ Z

0
f (z, t)dz

∫ Z

z

g(ζ )dζ. (72)
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Here, both sides represent the total diffusive transport into the surfacez = 0 during a single
time of flight T ; the right-hand inner integral being the chance of a droplet initially at height
z < Z reachingz = 0 during that time (it might naturally have been expressed as an integral
from−Z to−z, which, however, is the same for an even functiong as the integral fromz toZ).
Now the whole right-hand side, with reversed order of integration andf (z, t) approximated
by two terms of a Taylor series, becomes∫ Z

0
g(ζ )dζ

∫ ζ

0

[
f (0, t)+ z

(
∂f

∂z

)
z=0

]
dz, (73)

which, with expression (15) forD on the left-hand side, gives

1
2G

(
∂f

∂z

)
z=0

= Jf (0, t)+ 1
4G

(
∂f

∂z

)
z=0

whereJ = ∫ Z0 ζg(ζ )dζ (74)

is the gust function’s one-sided moment. Finally, this yields the boundary condition (67) with

A = G

4J
. (75)

In Sections 3 and 4, exact solutions of the integro-difference equation for a particular case
were found to be well represented asymptotically by the solution (50) of the partial differential
equation, and the boundary condition (51) which this solution asymptotically satisfies was
then interpreted in terms of diffusive transport into the surface. In the present more general
case, a boundary condition (71) can be thus interpreted ifA takes the value (75); therefore, it
may be reasonable to use the corresponding solution of the partial differential equation,

f (z, t) =
(
T

πt

)1/2
z+A
2Dt

e−
(z+A)2

4Dt , (76)

as an asymptotic representation off (z, t). (Incidentally, the ratio of the general value (75) for
A to the gust function’s standard deviationσ = G1/2 is not critically dependent on the exact
form of that function; for example, the ‘top-hat’ form (16) with variance (17) makesA = aZ
with a = 1

3 so thatA/σ takes the value 3−1/2 = 0·577,while a Gaussian form givesA/σ the
value (π/8)1/2 = 0·627,and a rigorous minimum value ofA/σ for anyg(ζ ) distribution is
0·500.)

By analogy to this solution (76) forV = 0, an exact solution of Equation (15) forV > 0
may be written

f (z, t) = B
(
T

πt

)1/2
z+A
2Dt

e−
(z+V t+A)2

4Dt , (77)

where the multiplying factorB becomes 1 whenV = 0. Then we may evaluate the integral
(61) forF(z), using substitutions (63) and (65) withA replacingaZ, to give

F(z) = B
(
T

D

)1/2

e−
V (z+A)
D = C

(
T

D

)1/2

e−
V z
D (78)
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with C = B e−VA/D, and it may be conjectured that (as before)C will differ rather little
from 1 for small values of the terminal velocityV . In that case the overall conclusion (70) is
unchanged.

6. Tentative further steps, taking droplet evaporation into account

The initial steps towards generalisation made in Section 5 were based firmly on results ob-
tained in a particular case where exact solutions of the integro-difference equation could be
asymptotically represented by exact solutions of the partial differential equation. Now a more
tentative further generalisation is attempted in cases when, because appropriate exact solutions
are unavailable, it may be necessary to proceed mainly by plausible analogy with the former
case. These are cases when evaporation of droplets is taken into account.

Evaporation gradually reduces the radius of a droplet, so that its terminal velocityV also
decreases. Here the dependence ofV on radius is a familiar function which for small radius
(< 30µm) varies as its square (Stokes-flow regime) while increasing more slowly for larger
radii. Also, for given wind conditions (principally, relative humidity) the rate of reduction of
radius is a certain (somewhat gradually decreasing) function of radius, and ofV (which are
themselves closely related), and it follows that the rateE at which the droplet fall speedV is
reduced by evaporation can be specified as a function ofV,

dV

dt
= −E(V ). (79)

For a droplet whose terminal velocityV decreases in this way after it leaves the surface
whent = 0, its net downward motion after timet , relative to that parcel of air in which it is
situated, becomes

X =
∫ t

0
V dt, (80)

and it may appear plausible to useX in place ofV t in the former asymptotic solution (77),
which would then become

f (z, t) = B
(
T

πt

)1/2
z+A
2Dt

e−
(z+X+A)2

4Dt . (81)

As noted in relation to Equation (58), this involves a simple shift (fromz to z+X) within the
exponent to allow for downward displacement of the droplet by a distanceX relative to an air
particle; while, asymptotically, leaving the boundary condition (71) unchanged.

In general, however, expression (81) is no longer an exact solution of equation (15) – whose
right-hand side it equates to

B

(
T

πt

)1/2 1

2Dt
e−

(z+X+A)2
4Dt

[
−3(z+A)

2t
+ (z+A)(z+X +A)

2

4Dt2
− X
t

]
, (82)

while its left-hand side takes the same form with dX/dt = V replacingX/t at the end of the
square brackets. Thus, they exactly coincide only whenV is constant; on the other hand, the
difference between them may plausibly be considered slight enough for expression (81) to be
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regarded as a useful approximate solution of Equation (15). Then this expression may, for a
drop whereV takes the valueV0 when it leaves the surface at timet = 0, be used along with
two integral relationships,

t =
∫ V0

V

dV

E(V )
and X =

∫ V0

V

V dV

E(V )
, (83)

betweent, X on the one hand andV0, V on the other.
In terms ofS(V ), the source function introduced in Equation (62) and an associated dis-

cussion, it is nowS(V0)dV0 which represents the rate of production per unit area per unit time
of droplets which initially have terminal velocities betweenV0 andV0 + dV0. Moreover, a
spray distribution functions(z, V ) may be defined so that the volume distribution at heightz

of droplets with terminal velocities betweenV andV + dV is s(z, V )dV .
The approximate form (81) off (z, t), the probability distribution for the heightz of a

spray droplet at timet after it leaves the surface, may be used in a simple integral relationship

s(z, V ) = 1

E(V )

∫ ∞
0
S(V0)f (z, t)dV0 (84)

betweens(z, V ) andS(V0); provided thatt andX, where they appear in Equation (81) for
f (z, t), are expressed in terms ofV0 andV by equations (83). In equation (84), the multiplying
factor

1

E(V )
=
∣∣∣∣ dt

dV

∣∣∣∣ (85)

is needed because[S(V0)dV0]dt represents droplet production per unit area in a time interval
dt while s(z, V )dV is the droplet distribution per unit volume in a fall-speed interval dV.

Evidently, the exponential expression (81) forf lends itself to approximate evaluation of
the integral (84) by the method of steepest descents. As a function ofV0, the exponent

(z+X +A)2
4Dt

(86)

is a minimum where its first derivative

V0

E(V0)

z+X +A
2Dt

− 1

E(V0)

(z+X +A)2
4Dt2

(87)

is equal to zero, giving

z+X +A = 2V0t; (88)

in which case the exponent’s second derivative with respect toV0 is readily calculated as the
positive quantity

κ = V0

E(V0)D

[
1+ V0

2tE(V0)

]
. (89)
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The method of steepest descents then approximates Equation (84) as

s(z, V ) = 1

E(V )
S(V0)f (z, t)

(
2π

κ

)1/2

, (90)

with t andX expressed in terms ofV0 andV by Equations (83) and withV0 then expressed in
terms ofz andV by the minimum-exponent condition (88).

Special interest is, of course, attached to this condition (88), which statistically identifies
the initial fall speedV0 of those droplets which at heightz, through evaporation, have predom-
inantly acquired fall speedV . The condition appears to be a nontrivial conclusion from the
line of argument presented in this paper.

7. Numerical results for the particular case of constant E

In the space that remains detailed calculations are presented for just one particular, relatively
simple, case when the functionE(V ) takes a constant value. These results are used to show in
broad terms the contrast between spray calculations with and without evaporation – while their
relevance to real ocean-spray processes is assessed briefly in the concluding Section 8 (where
E is found to differ from a constant only moderately for relatively small droplets having radii
< 150µm).

With constantE, Equations (83) give

Et = V0− V, 2EX = V 2
0 − V 2, (91)

so that the condition (88) linkingV andV0 becomes a quadratic equation

2E(z+A) = 3V 2
0 − 4VV0+ V 2 (92)

andV/V0 can be expressed, in terms of a nondimensional variable

2E(z+A)V −2
0 = α, as V/V0 = 2− (1+ α)1/2. (93)

Figure 10 depicts howV/V0 is reduced as the measure of heightα rises; note that, on the
steepest-descents approximation, droplets with initial fall speedV0 have evaporated com-
pletely (sinceV = 0) whereα = 3. At the same time their number distribution has de-
cayed with height somewhat less steeply than was suggested for cases without evaporation by
equation (78) – just because of the diminution in terminal velocityV asz increases.

Indeed the number density for all spray droplets at heightz may be written as an integral

s0(z) =
∫ ∞

0
s(z, V )dV (94)

with respect toV ; which, moreover, can be reformulated as an integral with respect toV0 by
use of the relation(92)betweenV andV0. With Equation (90) fors(z, V ), this gives

s0(z) = B
(
T

D

)1/2 ∫ ∞
0
S(V0)P (α)e−Q(α)V0(z+A)/D dV0, (95)
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Figure 10. Dependence ofV/V0, P (α) andQ(α) onα.

where the nondimensional expressions

Q(α) = 2α−1
[
(1+ α)1/2− 1

]
,

P (α) = 1
2

[
1+ (1+ α)−1/2

] [
2(1+ α)1/2− 1

]1/2
(96)

are also plotted in Figure 10. With no evaporation,α = 0 so thatQ(α) = P(α) = 1 and
Equation (95) agrees precisely with the results of Section 5. (Unexpectedly, agreement is exact
because the integral expression (66) in the case without evaporation has an unusual property;
namely, that estimation by steepest descents gives its accurate value.) On the other hand,
Q(α) < 1 for positiveα so that the reduction in number density with heightz for droplets
of initial fall speedV0 becomes more gradual than a simple exponential exp(−V0z/D); the
presence of the multiplierP(α)making little difference to this conclusion.

In broad terms, then, droplet number density decays more gradually, while droplet size
is diminished, as a result of evaporation. Figure 10 quantifies both processes in the case of
constantE analysed in this section.

8. General discussion

The paper ends with a general discussion which, while reviewing many obvious limitations on
the value of analyses presented above, aims to derive from them as much insight as possible
into ocean spray clouds at extreme wind speeds and their effect on TC thermodynamics.
First, cloud physics data are used (i) to estimate droplet sizes for which the constant-E ap-
proximation of Section 7 may be valuable, (ii) to assess qualitatively how the conclusions
will change for other droplet sizes, and (iii) to study implications for sea-air temperature
differences. Next, careful consideration is given to questions of how analyses using a constant
value of the Lagrangian correlation time can help to suggest conclusions relevant to ocean
spray clouds situated within a turbulent boundary layer characterized in the classical manner.
The discussion is then concluded with a forward look towards needs for future research.

Equation (79) forE(V ) allows it to be written as a product

E(V ) =
(
−dr

dt

)(
dV

dr

)
(97)
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Figure 11. The bottom diagram shows a smooth curveV (r), consistent with measurements of fall speed (in m/s)
for droplets of radiusr (in mm), together with its derivative dV/dr and the associated Reynolds numberR. The
top diagram represents [16] the ventilation factorfv(R) by a solid straight line and a dotted parabola. In between,
the value ofE/(1− rH ), as inferred from Equations (97) and (104), is plotted (in m/s2; see right-hand scale)
againstr (in mm).

of the rate of decrease of droplet radius by evaporation and the slope of the graph of terminal
velocity against radius. In Figure 11 a smooth curve consistent with the many good mea-
surements ofV (r) is plotted together with its gradient dV/dr and the associated Reynolds
numberR = 2rV/υ. Here, the kinematic viscocityυ is taken as a datum value 16·6mm2/s
for typical TC winds at 25◦C and 950mb. These are also the ambient conditions assumed for
the(−dr/dt) values derived as follows.

Rate of evaporation depends on the air’s relative humidity

rH = qa/qs(Ta), (98)

defined as the ratio of water-vapour concentration by mass to its saturation value at the air
temperatureTa. Actually, an evaporating droplet in moving air acquires almost instantly the
wet-bulb temperatureTw such that

cp(Ta − Tw) = Lv
[
qs(Tw)− qa

]
. (99)

Equation (99) allows sensible-heat transfer (with specific heatcp) from airstream to droplet to
balance transfer of latent heatLv from droplet to air – and is of such a simple form because
quantitatively identical diffusion mechanisms (both molecular and turbulent) mediate each
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Table 2.

rH 0·75 0·80 0·85 0·90 0·95

Tw 21·64◦ 22·35◦ 23·04◦ 23·71◦ 24·36◦
Ratio (100) 0·267 0·264 0·260 0·257 0·254

transfer. That equation yields, for the air temperatureTa = 25◦C assumed here, the values of
Tw shown for different relative humiditiesrH in Table 2 along with values of the ratio

qs(Tw)− qa
qs(Ta)− qa =

qs(Tw)− qa
(1− rH )qs(Ta) . (100)

To simplify later results, this ratio is henceforth taken as 0·261 (close to all values in Table 2);
which forTa = 25◦, with qs(Ta) = 0·0207, gives the value

qs(Tw)− qa = 0·0054(1− rH ) (101)

for the vapour-concentration difference which drives droplet evaporation.
The rate (−4πr2 dr/dt)ρL at which an evaporating droplet of densityρL (L for liquid

water) would lose mass by pure molecular diffusion of vapour with diffusivityDυ takes a
theoretical value

4πrDυρa
[
qs(Tw)− qa

]
, (102)

resulting from the fact that a steadily diffusing vapour concentrationq must be a spherically
symmetrical solution of Laplace’s equation. Furthermore, experimental data on evaporation
by a combination of diffusion with convection in a flow with Reynolds numberR are conven-
tionally expressed [16] in terms of a ‘ventilation factor’fv(R) by which the theoretical value
(102) needs to be multiplied, to give(
−dr

dt

)
= 1

r

ρa

ρL
Dv

[
qs(Tw)− qa

]
fv(R). (103)

Here,fv is expected to be close to 1 in the limitR → 0 for very small drops, and the
fact (see Figure 11) that these have dV/dr proportional tor gives a clear indication why the
product (97) forE is initially constant.

On the other hand, asV increases to 1 m/s (corresponding tor = 0·13mm andR = 16),
the value ofE falls by nearly a factor of 2. Undoubtedly, evaporation experiments are difficult;
nonetheless, there is a present consensus in favour offv(R) values as shown in an inset graph
on Figure 11. Also, withρaDv/ρL = 0·031mm2/s forTa = 25◦C, Equations (101 and (103)
give(
−dr

dt

)
= fv(R)

r
(1− rH )(0·000167 mm2/s), (104)

leading, with Equation (97), to the values ofE/(1− rH ) in m/s2 plotted againstr in Figure 11
and againstV in Figure 12.
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Figure 12. Values ofE(V )/(1 − rH ) replotted (still in m/s2; see right-hand scale) againstV (in m/s), with
(left-hand scale) the functions (106) and (109). Dotted line: the simple (constant-E) approximation 50V 2 to
expression (109).

Evidently, any constant-Eapproximation could at best be regarded as exceedingly crude
in the fall-speed interval 0< V < 1 m/s, whereE/(1− rH ) falls from 0·040 to 0·021 m/s2.
Even so, the variation is by not more than a factor of 2 rather than by anything like a whole
order of magnitude.

If in fact E/(1 − rH ) were crudely treated as approximately taking the constant value
0·03 m/s2 in this interval, then Equation (93) could be used to specify the highest levelz

which droplets leaving the surface with fall speedV0 could attain (corresponding toα = 3) as
satisfying

(1− rH )(z+A) = 50V2
0 metres, (105)

whereV0 is in m/s. Actually, this prediction can easily be assessed against a calculation
avoiding the constant-E approximation.

Indeed, Figure 12 shows not only howE(V ) varies withV but also two other functions

t0(V ) =
∫ V

0

dV

E(V )
, X0(V ) =

∫ V

0

V dV

E(V )
, (106)

in terms of which the relationship (88) betweenz, V andV0 can be written

z+A = 2V0 [t0(V0)− t0(V )] − [X0(V0)− X0(V )] . (107)

In particular, the heightz at which, in a statistical sense, drops leaving the surface with fall
speedV0 have attainedV = 0 (that is, have evaporated completely) satisfies

z+A = 2V0t0(V0)−X0(V0). (108)
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Accordingly,(1− rH )(z+A) varies withV0 like the function

(1− rH ) [2V t0(V )−X0(V )] (109)

of V which also is plotted in the figure – together with a dotted line representing the very sim-
ple approximation (105). On the basis of this comparison, errors resulting from the constant-E

approximation appear relatively modest. Even so, it may be desirable (and is indeed the au-
thor’s intention) to repeat the whole analysis of Section 7 with the simple relationship (92)
betweenV andV0 replaced by its more accurate form (107).

In the meantime, a legitimate aim may be to draw from the constant-Eanalysis as many
useful inferences as possible. These should include inferences relevant to TC thermodynamics,
where the key problem is that the most detailed ocean-spray observations have been made
only at wind speeds less than 28 m/s; therefore, an analyst’s main goal should be to help in
extrapolation to TC wind speeds of 50 to 60 m/s. Admittedly, an imperfect model can only
yield imperfect predictions in any absolute sense; nonetheless, provided that it incorporates
all essential physical effects acting on spray droplets (gusts, gravity, evaporation), it may be
able to give some quantitative indication of how the extent, and the effects, of ocean spray will
change when wind speed is doubled.

As to the extent of spray droplets of different sizes, the essential quantitative message of the
constant-E analysis is that droplets generated at the surface have spatial distributions which
are influenced by their initial size, as indicated from their fall speedV0, in two opposing
ways. On the one hand, evaporation gives their possible heightz an absolute upper limit
which Equation (105) specifies as as increasing withV0 like V 2

0 . On the other hand, at levels
below this upper limit, gravity causes their distributions to decay exponentially as the height
z increases, with an e-folding vertical distance ofD/V0 (or possibly up to 50% more if the
Q(α) factor in Equation (95) is taken into account), which decreases likeV −1

0 with increase
of V0.

There may perhaps be a suggestion here that, asD varies, vertical extent will be greatest
for values ofV0 proportional toD1/3 for which both spatial limitations are in balance. This
would make droplets extend, typically, to heights varying asD2/3; while, in the closely linear
part of the(V , r) curve in Figure 11, their radii and volumes would vary respectively asD1/3

and asD. The total mass of spray would then vary asD5/3 for a given scale of source function
S(V0) describing rate of production of droplets. Since on a conservative estimate (see below)
D increases with at least the first power of the wind speed, such a suggestion implies that
spray is augmented, in winds of doubled speed, by at least a factor of 3 over and above any
effects of increased droplet production at this greater speed (which are themselves expected to
be large). Clearly more research is needed on the soundness or otherwise of this inference; in
the meantime, any implications that it may have for TC thermodynamics need to be outlined.

Here the crucial question (see Section 1) is whether or not inwardly spiralling and accel-
erating air, as it approaches the base of the eyewall before beginning its buoyancy-powered
rise along a moist-air adiabat, starts that rise at a temperature significantly below the sea-
surface temperature. Evidently, dense spray restricts severely any radiative component in
sea-to-air transfer of sensible heat− which should therefore consist primarily of turbulent
heat transfer with a transfer rate per unit horizontal area proportional to the product of wind
speed and air-sea temperature difference. Such turbulent transfer has to balance those transfers
of sensible heat from air to droplets which are described by Equation (99). In an equilibrium
state, therefore, air-sea temperature difference is proportional to droplet evaporation rate (per
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unit horizontal area) divided by wind speed. Accordingly, if the mass of spray per unit area
encountered by the accelerating airstream varied only slowly, then as the relative humidityrH
approached 1 near the eyewall the droplet evaporation rate per unit area would approach zero
and so too would the air-sea temperature difference.

The situation would be quite different, however, if a very steep increase in spray mass
per unit area accompanied the accelerating wind’s approach to the eyewall. Not only would
this tend to counteract the(1 − rH ) factor in the evaporation rate; more significantly, the
heat balance processes could depart from equilibrium altogether, in that the last stages of
saturation of an inwardly spiralling airstream, already cooler than the sea surface, would occur
on its encounter with rather dense spray clouds. Then vertical gust components could rapidly
initiate its buoyancy-powered moist-air ascent in the convective cloud of the eyewall – leaving
no time for turbulent heat transfer to equilibrate its temperature with that of the sea surface.
The implications for TC thermodynamics (see Section 1) would be substantial.

These considerations suggest why further studies of the influence of wind speed on spray
distribution, including perhaps more detailed calculations using the present relatively simple
model, may be valuable. Yet it is important also to bear in mind the model’s limitations, and
to compare it with models based on classical descriptions of the turbulent boundary layer.

The present model’s most marked departure from such descriptions lies in its use of a con-
stant valueT for the Lagrangian correlation time. On the other hand, classical measurements
in turbulent boundary layers do indicate an approximately constant variance for the vertical
velocity component; so that, onceT has been taken constant, the assumption of a constant
varianceG for vertical displacement in timeT appears quite reasonable. Taken together,
these assumptions lead to the constant value (15) for the diffusivityD; whereas a classical
expression like

D = Ku∗z (110)

(in terms of a friction velocityu∗, the Karman constantK = 0·4 and the heightz) corresponds
rather to a Lagrangian correlation time increasing with height in proportion toz/u∗ whileG
varies asz2.

Admittedly, expected departures of the atmospheric boundary layer over deeply heav-
ing seas from such classical behaviour may involve for smaller values ofz some increased
coherence of vertical motion, and this has been part of the motivation for the present constant-
T model. Nonetheless it may be useful to ask if this model has anything in common with
classical spray-distribution predictions.

Such a comparison can at least be made in the steady-state case with evaporation neglected,
when Equation (110) for the diffusivity yields an equation

−V ∂f
∂z
= ∂

∂z

(
Ku∗z

∂f

∂z

)
(111)

for the distribution of droplets with fall speedV . Briefly, it is solutions of equation (111)
proportional to

z−V/Ku∗ (112)

which correspond to the steady-state solutions (78) of the present paper; and which, like those,
show a broadly analogous slow decrease withz whenV is small compared with other parame-
ters in the problem. By contrast, droplet evaporation cannot easily be allowed for within such
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a steady-state theory – and this consideration tends to reinforce the need for research aimed at
extending farther the approach outlined in Sections 6 and 7.

In such extensions, of course, it may be logical to employ a value ofD equal to the
average of expression (110) over the boundary layer thickness. This argument underlies the
earlier suggestion thatD should increase with at least the first power of the wind speed.
Yet beyond any additional theoretical studies, the problem’s biggest need is for real data on
ocean spray distributions at extreme wind speeds, and the paper may be concluded with just
a brief suggestion of how that might be achieved. For all-weather spray measurements in the
North Sea, the HEXOS platform Meetpost Noordwijk has proved highly effective [2]. One or
more similarly equipped fixed platforms are now needed in a sea area subject to extreme TC
conditions such as the Gulf of Mexico; where, fortunately, suitable structures already exist in
the form of oil rigs. Instrumentation of high quality, comparable to that used in HEXOS, with
automatic logging, needs to be installed on well chosen rigs so that, even when forecasts of
extreme winds necessitate crew evacuation, data about ocean spray in such conditions can still
be recorded.
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